Your car doesn't work properly? Better fix it

London Taxi smoking exhaust ing the automotive industry can be on their own to carry out less complicated tuning the car, but in many cases it is necessary to use the assistance of specialized auto mechanics and so on. Why deal

Dodane: 22-08-2016 09:56
Your car doesn't work properly? Better fix it London Taxi smoking exhaust

Tuning cars

Continuous improvement car is quite popular, especially among younger car owners. Many a young man invests a lot in order to have a truly unique car. True, knowing the automotive industry can be on their own to carry out less complicated tuning the car, but in many cases it is necessary to use the assistance of specialized auto mechanics and so on. Why deal with the improvement of the car? First of all, when we consider the car after tuning, we can see that their value increases considerably. Many modernized car looks almost like new, even if they already have a fairly high mileage and are quite age.


Internal combustion

"ICEV" redirects here. For the form of water ice, see Ice V. For the high speed train, see ICE V.
Diagram of a cylinder as found in 4-stroke gasoline engines.:
C ? crankshaft.
E ? exhaust camshaft.
I ? inlet camshaft.
P ? piston.
R ? connecting rod.
S ? spark plug.
V ? valves. red: exhaust, blue: intake.
W ? cooling water jacket.
gray structure ? engine block.
Diagram describing the ideal combustion cycle by Carnot

An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine the expansion of the high-temperature and high-pressure gases produced by combustion apply direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy.

The first commercially successful internal combustion engine was created by Étienne Lenoir around 18591 and the first modern internal combustion engine was created in 1876 by Nikolaus Otto (see Otto engine).

The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.12 Firearms are also a form of internal combustion engine.2

Internal combustion engines are quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler. ICEs are usually powered by energy-dense fuels such as gasoline or diesel, liquids derived from fossil fuels. While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for vehicles such as cars, aircraft, and boats.

Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil. There's a growing usage of renewable fuels like biodiesel for compression ignition engines and bioethanol or methanol for spark ignition engines. Hydrogen is sometimes used, and can be made from either fossil fuels or renewable energy.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Basic knowledge - Public costs

The external costs of automobiles, as similarly other economic externalities, are the measurable costs for other parties except the car proprietor, such costs not being taken into account when the proprietor opts to drive their car. According to the Harvard University,11 the main externalities of driving are local and global pollution, oil dependence, traffic congestion and traffic accidents; while according to a meta-study conducted by the Delft University12 these externalities are congestion and scarcity costs, accident costs, air pollution costs, noise costs, climate change costs, costs for nature and landscape, costs for water pollution, costs for soil pollution and costs of energy dependency. The existence of the car allows on-demand travel, given, that the necessary infrastructure is in place. This infrastructure represents a monetary cost, but also cost in terms of common assets that are difficult to represent monetarily, such as land use and air pollution.



Źródło: https://en.wikipedia.org/wiki/Economics_of_car_use